Divergent Legendre-sobolev Polynomial Series

نویسنده

  • Bujar Xh. Fejzullahu
چکیده

Let be introduced the Sobolev-type inner product (f, g) = 1 2 Z 1 −1 f(x)g(x)dx + M [f ′(1)g′(1) + f ′(−1)g′(−1)], where M ≥ 0. In this paper we will prove that for 1 ≤ p ≤ 4 3 there are functions f ∈ L([−1, 1]) whose Fourier expansion in terms of the orthonormal polynomials with respect to the above Sobolev inner product are divergent almost everywhere on [−1, 1]. We also show that, for some values of δ, there are functions whose Legendre-Sobolev expansions have almost everywhere divergent Cesàro means of order δ. AMS Mathematics Subject Classification (2000): 42C05, 42C10

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cubature over the sphere S in Sobolev spaces of arbitrary order

This paper studies numerical integration (or cubature) over the unit sphere S2 ⊂ R3 for functions in arbitrary Sobolev spaces Hs(S2), s > 1. We discuss sequences (Qm(n))n∈N of cubature rules, where (i) the rule Qm(n) uses m(n) points and is assumed to integrate exactly all (spherical) polynomials of degree ≤ n, and (ii) the sequence (Qm(n)) satisfies a certain local regularity property. This lo...

متن کامل

On Polar Legendre Polynomials

We introduce a new class of polynomials {Pn}, that we call polar Legendre polynomials, they appear as solutions of an inverse Gauss problem of equilibrium position of a field of forces with n + 1 unit masses. We study algebraic, differential and asymptotic properties of this class of polynomials, that are simultaneously orthogonal with respect to a differential operator and a discrete-continuou...

متن کامل

Cubature over the sphere S2 in Sobolev spaces of arbitrary order

This paper studies numerical integration (or cubature) over the unit sphere S2 ⊂ R3 for functions in arbitrary Sobolev spaces Hs(S2), s > 1. We discuss sequences (Qm(n))n∈N of cubature rules, where (i) the rule Qm(n) uses m(n) points and is assumed to integrate exactly all (spherical) polynomials of degree n and (ii) the sequence (Qm(n)) satisfies a certain local regularity property. This local...

متن کامل

A polynomial approximation for arbitrary functions

Abstract We describe an expansion of Legendre polynomials, analogous to the Taylor expansion, to approximate arbitrary functions. We show that the polynomial coefficients in Legendre expansion, thus, the whole series, converge to zero much more rapidly compared to the Taylor expansion of the same order. Furthermore, using numerical analysis with sixth-order polynomial expansion, we demonstrate ...

متن کامل

Divergent Cesàro Means of Jacobi-Sobolev Expansions

Let μ be the Jacobi measure supported on the interval [−1, 1]. Let introduce the Sobolev-type inner product 〈f, g〉 = ∫ 1 −1 f(x)g(x) dμ(x) +Mf(1)g(1) +Nf ′(1)g′(1), where M,N ≥ 0. In this paper we prove that, for certain indices δ, there are functions whose Cesàro means of order δ in the Fourier expansion in terms of the orthonormal polynomials associated with the above Sobolev inner product ar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008